Effect of Lipid Content on Anaerobic Digestion Process and Microbial Community: Review Study

Authors

  • Ali Alhraishawi Department of Civil Engineering, College of Engineering, Misan University, Iraq
  • Sukru Aslan Sivas Cumhuriyet University Department of Environmental Engineering, 58140, Sivas, Türkiye

Keywords:

Anaerobic digestion, lipid content, microbial community, anaerobic co-digestion, methane generation

Abstract

The indiscriminate release of significant amounts of food waste, fat oil and grease, and sewage sludge (SS) into the environment causes severe contamination in many nations. There are numerous potential treatment methods to cope with the organic wastes, but anaerobic digestion is currently widely accepted to handle different kinds of biological waste. One of the pillars supporting anaerobic digester biogas production increase in treatment plants is the use of fats in the wastewaters. However, it has been claimed that high-fat wastes, particularly mono-digestion in the anaerobic reactor, inhibits acetoclastic and methanotrophic bacteria, delays the formation of gas even more, and overtaxes the system. This paper examines the research on the impact of lipids on biogas enhancement, reactor inhibition, impact on the microbial communities, and co-digestion with lipids in the anaerobic digestion process

References

Ahmad, A., Ghufran, R., & Wahid, Z. A. (2011). Bioenergy from

anaerobic degradation of lipids in palm oil mill effluent. Reviews in

Environmental Science and Bio/Technology, 10(4), 353-376.

https://doi.org/10.1007/s11157-011-9253-8.

Alves, M. M., Pereira, M. A., Sousa, D. Z., Cavaleiro, A. J., Picavet,

M., Smidt, H., & Stams, A. J. (2009). Waste lipids to energy: how to

optimize methane production from longchain

fatty acids

(LCFA). Microbial biotechnology, 2(5), 538-550. https://doi.org

/10.1111/j.1751-7915.2009.00100.x.

Angelidaki, I., & Ahring, B. K. (1992). Effects of free long-chain

fatty acids on thermophilic anaerobic digestion. Applied microbiology

and biotechnology, 37(6), 808-812.

Chen, X., Romano, R. T., & Zhang, R. (2010). Anaerobic digestion

of food wastes for biogas production. International Journal of

Agricultural and Biological Engineering, 3(4), 61-72. . https://doi.org

/10.3965/j.issn.1934-6344.2010.04.0-0.

Chen, Y., Cheng, J. J., & Creamer, K. S. (2008). Inhibition of

anaerobic digestion process: a review. Bioresource

technology, 99(10), 4044-4064.

https://doi.org/10.1016/j.biortech.2007.01.057.

Cho, H. S., Moon, H. S., Lim, J. Y., & Kim, J. Y. (2013). Effect of

long chain fatty acids removal as a pretreatment on the anaerobic

digestion of food waste. Journal of Material Cycles and Waste

Management, 15(1), 82-89. Click to copy the URI to your

clipboard.https://doi.org/10.1007/s10163-012-0092-7

Chowdhury, B., Lin, L., Dhar, B. R., Islam, M. N., McCartney, D., &

Kumar, A. (2019). Enhanced biomethane recovery from fat, oil, and

grease through co-digestion with food waste and addition of

conductive materials. Chemosphere, 236, 124362.

https://doi.org/10.1016/j.chemosphere.2019.124362

Cirne, D. G., Paloumet, X., Björnsson, L., Alves, M. M., &

Mattiasson, B. (2007). Anaerobic digestion of lipid-rich waste—

effects of lipid concentration. Renewable energy, 32(6), 965-975.

https://doi.org/10.1016/j.renene.2006.04.003.

Dasa, K. T., Westman, S. Y., Millati, R., Cahyanto, M. N.,

Taherzadeh, M. J., & Niklasson, C. (2016). Inhibitory effect of longchain

fatty acids on biogas production and the protective effect of

membrane bioreactor. BioMed Research International,

;2016:7263974. https://doi.org/10.1155/2016/7263974.

Davidsson, Å., Lövstedt, C., la Cour Jansen, J., Gruvberger, C., &

Aspegren, H. (2008). Co-digestion of grease trap sludge and sewage

sludge. Waste Management, 28(6), 986-992. https://doi.org/

1016/j.wasman.2007.03.024.

Dehghani, M., Sadatjo, H., Maleknia, H., & Shamsedini, N. (2014).

A survey on the removal efficiency of fat, oil and grease in Shiraz

Municipal wastewater treatment plant. Jentashapir Journal of Health

Research, 5(6). https://doi.org/10.17795/jjhr-26651.

Hanaki, K., Matsuo, T., & Nagase, M. (1981). Mechanism of

inhibition caused by longchain

fatty acids in anaerobic digestion

process. Biotechnology and bioengineering, 23(7), 1591-1610.

https://doi.org/10.1002/bit.260230717.

Heo, N. H., Park, S. C., Lee, J. S., Kang, H., & Park, D. H. (2003).

Single-stage anaerobic codigestion for mixture wastes of simulated

Korean food waste and waste activated sludge. In Biotechnology for

Fuels and Chemicals (pp. 567-579). Humana Press, Totowa, NJ.

https://doi.org/10.1385/abab:107:1-3:567.

Iskander, S. M., Amha, Y. M., Wang, P., Dong, Q., Liu, J., Corbett,

M., & Smith, A. L. (2021). Investigation of Fats, Oils, and Grease

Co-digestion With Food Waste in Anaerobic Membrane Bioreactors

and the Associated Microbial Community Using MinION

Sequencing. Frontiers in bioengineering and biotechnology, 9,

https://doi.org/10.3389/fbioe.2021.613626.

Kabouris, J. C., Tezel, U., Pavlostathis, S. G., Engelmann, M., Todd,

A. C., & Gillette, R. A. (2008). The anaerobic biodegradability of

municipal sludge and fat, oil, and grease at mesophilic

conditions. Water Environment Research, 80(3), 212-221../10.2175

https://doi.org/1061430007X220699.

Kim, S. H., Han, S. K., & Shin, H. S. (2004). Kinetics of LCFA

inhibition on acetoclastic methanogenesis, propionate degradation

and β-oxidation. Journal of Environmental Science and Health, Part

A, 39(4), 1025-1037. https://doi.org/10.1081/ese-120028411.

Koster, I. W., & Cramer, A. (1987). Inhibition of methanogenesis

from acetate in granular sludge by long-chain fatty acids. Applied

and environmental microbiology, 53(2), 403-409.

https://doi.org/10.1128/aem.53.2.403-409.1987.

Li, C., Champagne, P., & Anderson, B. C. (2011). Evaluating and

modeling biogas production from municipal fat, oil, and grease and

synthetic kitchen waste in anaerobic co-digestions. Bioresource

technology, 102(20), 9471-9480.

https://doi.org/10.1016/j.biortech.2011.07.103.

Lin, C. S. K., Pfaltzgraff, L. A., Herrero-Davila, L., Mubofu, E. B.,

Abderrahim, S., Clark, J. H., & Luque, R. (2013). Food waste as a

valuable resource for the production of chemicals, materials and

fuels. Current situation and global perspective. Energy &

Environmental Science, 6(2), 426-464. https://doi.org

/10.1039/c2ee23440h.

Long, J. H., Aziz, T. N., Francis III, L., & Ducoste, J. J. (2012).

Anaerobic co-digestion of fat, oil, and grease (FOG): A review of gas

production and process limitations. Process Safety and

Environmental Protection, 90(3), 231-245.

https://doi.org/10.1016/j.psep.2011.10.001.

Luostarinen, S., Luste, S., & Sillanpää, M. (2009). Increased biogas

production at wastewater treatment plants through co-digestion of

sewage sludge with grease trap sludge from a meat processing

plant. Bioresource technology, 100(1), 79-85.

https://doi.org/10.1016/j.biortech.2008.06.029.

Martínez, E. J., Gil, M. V., Fernandez, C., Rosas, J. G., & Gómez, X.

(2016). Anaerobic codigestion of sludge: addition of butcher’s fat

waste as a cosubstrate for increasing biogas production. PLoS One,

(4), e0153139. https://doi.org/10.1371/journal.pone.0153139.

Mustapha, N. A., Sharuddin, S. S., Zainudin, M. H. M., Ramli, N.,

Shirai, Y., & Maeda, T. (2017). Inhibition of methane production by

the palm oil industrial waste phospholine gum in a mimic enteric

fermentation. Journal of Cleaner Production, 165, 621-629.

https://doi.org/10.1016/j.jclepro.2017.07.129.

Nakhla, G., Al-Sabawi, M., Bassi, A., & Liu, V. (2003). Anaerobic

treatability of high oil and grease rendering wastewater. Journal of

Hazardous Materials, 102(2-3), 243-255.

https://doi.org/10.1016/s0304-3894(03)00210-3.

Neves, L., Oliveira, R., & Alves, M. M. (2009). Fate of LCFA in the

co-digestion of cow manure, food waste and discontinuous addition

of oil. Water research, 43(20), 5142-5150.

https://doi.org/10.1016/10.1016/j.watres.2009.08.013.

Noutsopoulos, C., Andreadakis, A., Mamais, D., & Gavalakis, E.

(2007). Identification of type and causes of filamentous bulking

under Mediterranean conditions. Environmental technology, 28(1),

-122. https://doi.org/10.1080/09593332808618771.

Noutsopoulos, C., Mamais, D., Antoniou, K., Avramides, C.,

Oikonomopoulos, P., & Fountoulakis, I. (2013). Anaerobic codigestion

of grease sludge and sewage sludge: The effect of organic

loading and grease sludge content. Bioresource technology, 131, 452-

https://doi.org/10.1016/j.biortech.2012.12.193.

Palatsi, J., Laureni, M., Andrés, M. V., Flotats, X., Nielsen, H. B., &

Angelidaki, I. (2009). Strategies for recovering inhibition caused by

long chain fatty acids on anaerobic thermophilic biogas

reactors. Bioresource technology, 100(20), 4588-4596.

https://doi.org/10.1016/j.biortech.2009.04.046.

Pereira, M. A., Sousa, D. Z., Mota, M., & Alves, M. M. (2004).

Mineralization of LCFA associated with anaerobic sludge: kinetics,

enhancement of methanogenic activity, and effect of

VFA. Biotechnology and bioengineering, 88(4), 502-511.

https://doi.org/10.1002/bit.20278.

Quéméneur, M., & Marty, Y. (1994). Fatty acids and sterols in

domestic wastewaters. Water Research, 28(5), 1217-1226.

https://doi.org/10.1016/0043-1354(94)90210-0.

Samarasiri, B. K. T., Mihiranga, P. A. D., & Rathnasiri, P. G. (2016).

Effect of lipid inhibition in anaerobic wastewater treatment: a case

study using desiccated coconut wastewater. Annual Session of the

Institution of Engineers, Sri Lanka, 1-10.

https://doi.org/10.13140/RG.2.2.36760.80646.

Sethi, R. (2018). Biogas Production from Organic Waste, Meat and

Fog by Anaerobic Digestion and Ultimate Sludge

Digestibility (Doctoral dissertation, Florida Atlantic University).

Shea, T., Johnson, T. D., Gabel, D., & Forbes, B. (2010). Introducing

FOG to sludge–a sticky proposition. Proceedings of the Water

Environment Federation, 2010(14), 2688-2700.

https://doi.org/10.2175/193864710798170513.

Silvestre, G., Rodríguez-Abalde, A., Fernández, B., Flotats, X., &

Bonmatí, A. (2011). Biomass adaptation over anaerobic co-digestion

of sewage sludge and trapped grease waste. Bioresource

technology, 102(13), 6830-6836.

https://doi.org/10.1016/j.biortech.2011.04.019.

Sun, H., Wu, S., & Dong, R. (2016). Monitoring volatile fatty acids

and carbonate alkalinity in anaerobic digestion: titration

methodologies. Chemical Engineering & Technology, 39(4), 599-

https://doi.org /10.1002/ceat.201500293.

Sun, Y., Wang, D., Yan, J., Qiao, W., Wang, W., & Zhu, T. (2014).

Effects of lipid concentration on anaerobic co-digestion of municipal

biomass wastes. Waste Management, 34(6), 1025-1034.

https://doi.org/10.1016/j.wasman.2013.07.018.

Suto, P., Gray, D., Larsen, E., & Hake, J. (2006). Innovative

anaerobic digestion investigation of fats, oils, and

grease. Proceedings of the Water Environment Federation, 2006(2),

-879. https://doi.org/10.2175/193864706783796853.

Usman, M., Salama, E. S., Arif, M., Jeon, B. H., & Li, X. (2020).

Determination of the inhibitory concentration level of fat, oil, and

grease (FOG) towards bacterial and archaeal communities in

anaerobic digestion. Renewable and Sustainable Energy

Reviews, 131, 110032. https://doi.org/10.1016/j.rser.2020.110032.

Wan, C., Zhou, Q., Fu, G., & Li, Y. (2011). Semi-continuous

anaerobic co-digestion of thickened waste activated sludge and fat,

oil and grease. Waste management, 31(8), 1752-1758. https://doi.org

/10.1016/j.wasman.2011.03.025.

Wang, L., Aziz, T. N., & Francis, L. (2013). Determining the limits

of anaerobic co-digestion of thickened waste activated sludge with

grease interceptor waste. Water research, 47(11), 3835-3844.

https://doi.org/10.1016/j.watres.2013.04.003.

Williams, J. B., Clarkson, C., Mant, C., Drinkwater, A., & May, E.

(2012). Fat, oil and grease deposits in sewers: Characterization of

deposits and formation mechanisms. Water research, 46(19), 6319-

https://doi.org/10.1016/j.watres.2012.09.002

Downloads

Published

2022-08-23

How to Cite

Alhraishawi, A., & Aslan, S. (2022). Effect of Lipid Content on Anaerobic Digestion Process and Microbial Community: Review Study. ESI Preprints, 8, 197. Retrieved from https://esipreprints.org/index.php/esipreprints/article/view/106

Issue

Section

Preprints