Distribution and Carbon Sequestration Potential of Cola Laurifolia Mast.: A Dominant Native Riparian Species Along Permanent Rivers in Sub-Saharan Africa

Authors

  • Gouwidida Elice Kabore Laboratory of Plant Biology and Ecology, University Joseph Ki-Zerbo
  • Philippe Bayen Laboratory of Plant Biology and Ecology, University Joseph Ki-Zerbo
  • Sizabda Djibril Dayamba African Forest Forum, Nairobi, Kenya
  • Adjima Thiombiano Professor, University Joseph Ki-Zerbo, Laboratory of Plant Biology and Ecology, Ouagadougou, Burkina Faso

Keywords:

Allometry, aboveground biomass, Burkina Faso, species distribution, Mouhoun River

Abstract

Species-specific models for estimating aboveground biomass (AGB) are the accurate means of quantifying species’ carbon pools. Cola laurifolia Mast., a dominant and multi-purpose riparian species along the Mouhoun River in Burkina Faso have a regressive population. Few scientific studies exist concerning this riparian species population and carbon stock capacity. This study aims to allow this gap by formulating a species-specific allometric model for assessing with direct method for Cola laurifolia leave, branches, stem and whole AGB. Parameters used to perform models are tree diameter at breast height (DBH), basal diameter at 20 cm (D20), height (H), and mean crown diameter (CD) using data from 30 trees. Population structure shows a low regeneration potential at all of the studied river zones (i.e. upstream, intermediate and downstream zones). The carbon stock was found to be 54.14 kg C tree-1 and 9.24 Mg C. ha-1 . The density of C. laurifolia was higher in downstream zone, and consequently the carbon stock was higher in these areas. The log-log linear model is the best-fitted form incorporated DBH and H as predictors. This form is best fitted for the three tree components (i.e. leaves, branches, stem) and the AGB. The AGB model is more accurate with high coefficient of determination and low RSE (R²=0.92; RSE=0.28) contrasted with leaves models. The global model has the best goodness of fit because of a low relative error (-0.213 %) compared to the use of three component models. The accuracy of our species-specific model confirms the need to develop such models for greater accuracy in AGB estimations.

References

Arbonnier, M. (2019). Arbres, arbustes et lianes des zones sèches

d’Afrique de l’Ouest (Quae).

https://www.quae.com/produit/1554/9782759225484/arbres-arbusteset-lianes-d-afrique-de-l-ouest

Barbault, R., & Chevassus-au-Louis, B. (2005). Biodiversité et crise

de croissance des sociétés humaines: l’horizon 2010. Biodiversité et

Changements Globaux: Enjeux de Société et Défis Pour La

Recherche, April, 8–23.

Basuki, T. M., Laake, P. E. Van, Skidmore, A. K., & Hussin, Y. A.

(2009). Allometric equations for estimating the above-ground

biomass in tropical lowland Dipterocarp forests. Forest Ecology and

Management, 257, 1684–1694.

https://doi.org/10.1016/j.foreco.2009.01.027

Bayen, P. (2016). Restauration des sols dégradés par afforestation et

évaluation des potentialités de séquestration du carbone de six

espèces ligneuses en zones sahélienne et soudano-sahélienne du

Burkina Faso. Université Ouaga I PR Joseph KI-ZERBO.

Bayen, P., Bognounou, F., Lykke, A. M., Ouédraogo, M., &

Thiombiano, D. (2015). The use of biomass production and

allometric models to estimate carbon sequestration of Jatropha curcas

L. plantations in western Burkina Faso. Environment, Development

and Sustainability, 7(1). https://doi.org/10.1007/s10668-015-9631-4

Bayen, P., Noulèkoun, F., Bognounou, F., Lykke, A. M., Djomo, A.,

Lamers, J. P. A., & Thiombiano, A. (2020). Models for estimating

aboveground biomass of four dryland woody species in Burkina

Faso, West Africa. Journal of Arid Environments, 180(2019).

https://doi.org/10.1016/j.jaridenv.2020.104205

Bebber, D. P., & Butt, N. (2017). Tropical protected areas reduced

deforestation carbon emissions by one third from 2000-2012.

Scientific Reports, 7(1), 1–7. https://doi.org/10.1038/s41598-017-

-w

Bondé, L., Ganamé, M., Ouédraogo, O., Nacoulma, B. M.,

Thiombiano, A., & Boussim, J. I. (2017). Allometric models to

estimate foliage biomass of Tamarindus indica in Burkina Faso.

Southern Forests: A Journal of Forest Science, 1–8.

Brown, S., Schroeder, P., & Birdsey, R. (1997). Aboveground

biomass distribution of US eastern hardwood forests and the use of

large trees as an indicator of forest development. Forest Ecology and

Management, 96, 37–47.

Castilho, C. V. De, Magnusson, W. E., Aaujo, R. N. O. de, Luizao,

R. C. C., Luizao, F. J., Lima, A. P., & Higuchi, N. (2006). Variation

in aboveground tree live biomass in a central Amazonian Forest:

Effects of soil and topography. Forest Ecology and Management,

, 85–96. https://doi.org/10.1016/j.foreco.2006.06.024

Chavan, B. L., & Rasal, G. B. (2011). Potentiality of Carbon

Sequestration in six year ages young plant from University campus of

Aurangabad. Global Journal of Researches in Engineering, 11(7).

https://doi.org/ISSN 2249-4596

Chave, A. J., Andalo, C., Brown, S., Cairns, M. A., Chambers, J. Q.,

Eamus, D., Fölster, H., Fromard, F., Higuchi, N., Kira, T., Lescure,

J., Nelson, B. W., Ogawa, H., Puig, H., Riéra, B., Yamakura, T.,

Chave, J., Andalo, C., Brown, S., … Riéra, B. (2005). Tree

Allometry and Improved Estimation of Carbon Stocks and Balance in

Tropical Forests Tree allometry and improved estimation and balance

in tropical forests of carbon stocks. Ecology, 145(1), 87–99.

https://doi.org/10.1007/s00442-005-0100-x

Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan,

M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M.,

Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A.,

Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda,

A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014).

Improved allometric models to estimate the aboveground biomass of

tropical trees. Global Change Biology, 20(10), 3177–3190.

https://doi.org/10.1111/gcb.12629

Daba, D. E., & Soromessa, T. (2019). The accuracy of speciesspecific

allometric equations for estimating aboveground biomass in

tropical moist montane forests: Case study of Albizia grandibracteata

and Trichilia dregeana. Carbon Balance and Management, 14(1), 1–

https://doi.org/10.1186/s13021-019-0134-8

Dayamba, S. D., Djoudi, H., Zida, M., Sawadogo, L., & Verchot, L.

(2016). Biodiversity and carbon stocks in different land use types in

the Sudanian Zone of Burkina Faso, West Africa. “Agriculture,

Ecosystems and Environment,” 216, 61–72.

https://doi.org/10.1016/j.agee.2015.09.023

Delitti, W. B. C., Meguro, M., & Pausas, J. G. (2006). Biomass and

mineralmass estimates in a “cerrado” ecosystem. Brazilian Journal of

Botany, 29(4), 531–540. https://doi.org/10.1590/S0100-

Dimobe, K., Goetze, D., Ouédraogo, A., Mensah, S., Akpagana, K.,

Porembski, S., & Thiombiano, A. (2018). Aboveground biomass

allometric equations and carbon content of the shea butter tree

(Vitellaria paradoxa C.F. Gaertn., Sapotaceae) components in

Sudanian savannas (West Africa). Agroforestry Systems, 93(3),

–1132. https://doi.org/10.1007/s10457-018-0213-y

Dimobe, K., Mensah, S., Goetze, D., Ouédraogo, A., Kuyah, S.,

Porembski, S., & Thiombiano, A. (2018). Aboveground biomass

partitioning and additive models for Combretum glutinosum and

Terminalia laxiflora in West Africa. Biomass and Bioenergy,

(November 2017), 151–159.

https://doi.org/10.1016/j.biombioe.2018.04.022

Djomo, A. N., Ibrahima, A., Saborowski, J., & Gravenhorst, G.

(2010). Allometric equations for biomass estimations in Cameroon

and pan moist tropical equations including biomass data from Africa.

Forest Ecology and Management, 260(10), 1873–1885.

https://doi.org/10.1016/j.foreco.2010.08.034

Ejikeme, C. M., Ezeonu, C. S., & Eboatu, A. N. (2014).

Determination of Physical and Phytochemical Constituents of Some

Tropical Timbers Indigenous To Niger Delta Area of Nigeria.

European Scientific Journal, 10(18), 1857–7881.

Fayolle, A., Doucet, J., Gillet, J., Bourland, N., & Lejeune, P. (2013).

Forest Ecology and Management Tree allometry in Central Africa :

Testing the validity of pantropical multi-species allometric equations

for estimating biomass and carbon stocks. Forest Ecology and

Management, 305, 29–37.

https://doi.org/10.1016/j.foreco.2013.05.036

Fontès, J., & Guinko, S. (1995). Carte de la végétation et de

l’occupation du sol du Burkina Faso. Notice explicative. Toulouse,

Institut de la Carte Internationale de la Végétation ; (P. C.

(88313101) Ministère de la Coopération Française (ed.); 1995th ed.,

Issue Ouagadougou, Institut du Développement Rural-Faculté des

Sciences et Techniques).

Ganamé, M., Bayen, P., Dimobe, K., Ouédraogo, I., & Thiombiano,

A. (2020). Aboveground biomass allocation, additive biomass and

carbon sequestration models for Pterocarpus erinaceus Poir. in

Burkina Faso. Heliyon, 6(4).

https://doi.org/10.1016/j.heliyon.2020.e03805

Gnoumou, A., Bognounou, F., Hahn, K., & Adjima Thiombiano.

(2011). Woody plant diversity and stand structure in the Comoe-

Leraba Reserve, Southwestern Burkina Faso (West Africa). Journal

of Biological Sciences, 11(2), 111–123.

Gofc-Gold. (2008). Reducing greenhouse gas emissions from

deforestation and degradation in developing countries: a sourcebook

of methods and procedures for monitoring, measuring and reporting.

In GOFC-GOLD Report version COP13-2.

https://doi.org/10.1017/CBO9781107415324.004

Hahn-hadjali, K., & Thiombiano, A. (2000). PERCEPTION DES

ESPECES EN VOIE DE DISPARITION EN MILIEU

GOURMANTCHE ( EST DU BURKINA FASO ) Méthodologie

Résultats et discussions. Berichte Des Sonderforshungsbereichs 268,

Band 14, Frankfurt, 285–294.

Henry, M., Besnard, A., Asante, W. A., Eshun, J., Adu-bredu, S.,

Valentini, R., Bernoux, M., & Saint-andré, L. (2010). Wood density ,

phytomass variations within and among trees , and allometric

equations in a tropical rainforest of Africa. Forest Ecology and

Management, 260(8), 1375–1388.

https://doi.org/10.1016/j.foreco.2010.07.040

Hunter, M. O., Keller, M., Victoria, D., & Morton, D. C. (2013). Tree

height and tropical forest biomass estimation. Biogeosciences,

(12), 8385–8399. https://doi.org/10.5194/bg-10-8385-2013

Idu, M., Erhabor, J. O., & Ovuakporie-uvo, O. (2014).

Ethnomedicinal Plants Used By the Idoma People- Benue State ,

Nigeria. American Journal of Ethnomedicine, 1(1), 72–88.

Ifo, S. A., Mbemba, M., Koubouana, F., & Binsangou, S. (2017).

Stock de carbone dans les gros débris ligneux végétaux : cas des

forêts tropicales pluvieuses de la Likouala, République du Congo.

European Scientific Journal, ESJ, 13(12), 384.

https://doi.org/10.19044/esj.2017.v13n12p384

IPCC. (2014). Mitigation of Climate Change Summary for

Policymakers and Technical Summary Mitigation of Climate Change.

Ketterings, Q. M., Coe, R., Noordwijk, M. Van, Ambagau, Y., &

Palm, C. A. (2001). Reducing uncertainty in the use of allometric

biomass equations for predicting above-ground tree biomass in mixed

secondary forests. Forest Ecology and Management, 146, 199–209.

Kraus, T. E. C., Dahlgren, R. A., & Zasoski, R. J. (2003). Tannins in

nutrient dynamics of forest ecosystems - A review. Plant and Soil,

(1), 41–66. https://doi.org/10.1023/A:1026206511084

Kuyah, S., Muthuri, C., Jamnadass, R., Mwangi, P., Neufeldt, H., &

Dietz, J. (2012). Crown area allometries for estimation of

aboveground tree biomass in agricultural landscapes of western

Kenya. 86, 267–277. https://doi.org/10.1007/s10457-012-9529-1

Makungwa, S. D., Chittock, A., Skole, D. L., Kanyama-Phiri, G. Y.,

& Woodhouse, I. H. (2013). Allometry for biomass estimation in

Jatropha trees planted as boundary hedge in farmers’ fields. Forests,

(2), 218–233. https://doi.org/10.3390/f4020218

Mankessi, F., Malonga, M. G. K., & Ifo, S. A. (2022). Dynamique du

carbone organique du sol et de l’azote dans une chronoséquence de

plantation de Acacia auriculiformis A. Cunn. ex Benth. (Fabaceae), à

Bambou-Mingali (République du Congo). European Scientific

Journal ESJ, 18(8), 172–188.

https://doi.org/10.19044/esj.2022.v18n8p172

Mbayngone, E., & Thiombiano, A. (2011). Dégradation des aires

protégées par l’exploitation des ressources végétales: cas de la

réserve partielle de faune de Pama, Burkina Faso (Afrique de

l’Ouest). Fruits, 66(3), 187–202.

https://doi.org/10.1051/fruits/2011027

Mbow, C. (2009). Potentiel et dynamique des stocks de carbone des

savanes soudaniennes et soudanoguinéennes du Sénégal. [Université

Cheikh Anta Diop de Dakar (UCAD)].

https://doi.org/10.1177/001139283031001006

Mbow, C., Verstraete, M. M., Sambou, B., Diaw, A. T., & Neufeldt,

H. (2014). Allometric models for aboveground biomass in dry

savanna trees of the Sudan and Sudan-Guinean ecosystems of

Southern Senegal. Journal of Forest Research, 19(3), 340–347.

https://doi.org/10.1007/s10310-013-0414-1

Morse, J. L., Megonigal, J. P., & Walbridge, M. R. (2004). Sediment

nutrient accumulation and nutrient availability in two tidal freshwater

marshes along the Mattaponi River, Virginia, USA. Biogeochemistry,

(2), 175–206.

https://doi.org/10.1023/B:BIOG.0000031077.28527.a2

Ngomanda, A., Engone Obiang, N. L., Lebamba, J., Moundounga

Mavouroulou, Q., Gomat, H., Mankou, G. S., Loumeto, J., Midoko

Iponga, D., Kossi Ditsouga, F., Zinga Koumba, R., Botsika Bobé, K.

H., Mikala Okouyi, C., Nyangadouma, R., Lépengué, N., Mbatchi,

B., & Picard, N. (2014). Site-specific versus pantropical allometric

equations: Which option to estimate the biomass of a moist central

African forest? Forest Ecology and Management.

https://doi.org/10.1016/j.foreco.2013.10.029

Ouedraogo, A., Thiombiano, A., & Guinko, S. (2005). Utilisations,

état des peuplements et régénération de cinq espèces ligneuses

utilitaires dans l’Est du Burkina Faso. Homme, Plantes et

Environnement Au Sahel Occidental, 173–184.

Ouédraogo, K., Dimobe, K., & Thiombiano, A. (2020). Allometric

models for estimating aboveground biomass and carbon stock for

diospyros mespiliformis in West Africa. Silva Fennica, 54(1).

https://doi.org/10.14214/sf.10215

Ouedraogo, S., Ouedraogo, O., Dimobe, K., Thiombiano, A., &

Boussim, I. J. (2020). Prediction of aboveground biomass and carbon

stock of Balanites aegyptaca, a multipurpose species in Burkina Faso.

Heliyon, 6(8), 1–12. https://doi.org/10.1016/j.heliyon.2020.e04581

Pallo, F. J. P., Sawadogo, N., Sawadogo, L., Sedogo, M. P., & Assa,

A. (2008). Statut de la matière organique des sols dans la zone sudsoudanienne

au Burkina Faso. Biotechnology, Agronomy and Society

and Environment, 12(3), 29–38.

http://www.pressesagro.be/base/index.php/base/article/view/365

Parresol, B. R. (1999). Assessing tree and stand biomass: A review

with examples and critical comparisons. Forest Science, 45(4), 573–

https://doi.org/10.1093/forestscience/45.4.573

Pearson, T. R. H., Brown, S., Murray, L., & Sidman, G. (2017).

Greenhouse gas emissions from tropical forest degradation: An

underestimated source. Carbon Balance and Management, 12(1).

https://doi.org/10.1186/s13021-017-0072-2

Penman, J., Gytarsky, M., Hiraishi, T., Krug, T., Kruger, D., Pipatti,

R., Buendia, L., Miwa, K., Ngara, T., Tanabe, K., & Wagner, F.

(2003). Good Practice Guidance for Land Use , Land-Use Change

and Forestry Edited by. Institute for Global Environmental

Strategies, Hayama, Kanagawa.

Picard, N., Saint-andré, L., & Henry, M. (2012). Manuel de

construction d ’ équations allométriques pour l ’ estimation du

volume et la biomasse des arbres.

Sambaré, O., Ouedraogo, O., Wittig, R., & Thiombiano, A. (2010).

Diversité et écologie des groupements ligneux des formations

ripicoles du Burkina Faso (Afrique de l’Ouest). International Journal

of Biological and Chemical Sciences, 4(5), 1782–1800.

https://doi.org/10.4314/ijbcs.v4i5.65587

Santa Regina, I. (2000). Biomass estimation and nutrient pools in

four Quercus pyrenaica in Sierra de Gata Mountains, Salamanca,

Spain. Forest Ecology and Management, 132(2–3), 127–141.

https://doi.org/10.1016/S0378-1127(99)00219-4

Sinsin, B., Ahanchédé, A., Hounhouigan, J., Lalèyè, P.,

Chrysostome, C., Adégbidi, A., & Djego, J. (2016). Méthodes de

collecte et d’analyse des données de terrain pour l’évaluation et le

suivi de la végétation en Afrique (Vol. 20, Issue June).

Sprugel, D. G. (1983). Correcting for Bias in Log-Transformed

Allometric Equations. Wiley, 64(1), 209–210.

Teodoro, M., Oliveira, D., Damasceno-junior, G. A., Pott, A.,

Conceição, A., Filho, P., Rondon, Y., & Parolin, P. (2014).

Regeneration of riparian forests of the Brazilian Pantanal under flood

and fire influence. FOREST ECOLOGY AND MANAGEMENT, 331,

–263. https://doi.org/10.1016/j.foreco.2014.08.011

Thiombiano, A., Schmidt, M., Dressler, S., Ouédraogo, A., Hahn, K.,

& Zizka, G. (2012). Catalogue des plantes vasculaires du Burkina

Faso. Boissiera, Conservatoire et Jardin Botaniques de La Ville de

Génève, 65, 1–391. http://goo.gl/1hizQw

Traore, L., Ouedraogo, I., Ouedraogo, A., & Thiombiano, A. (2011).

Perceptions, usages et vulnérabilité des ressources végétales

ligneuses dans le Sud-Ouest du Burkina Faso. International Journal

of Biological and Chemical Sciences, 5(1), 258–278.

https://doi.org/10.4314/ijbcs.v5i1.68103

Xie, L., Li, F., Zhang, L., Widagdo, F. R. A., & Dong, L. (2020). A

bayesian approach to estimating seemingly unrelated regression for

tree biomass model systems. Forests, 11(12), 1–30.

https://doi.org/10.3390/f11121302

Zhang, J., Ge, Y., Chang, J., Jiang, B., Jiang, H., Peng, C., Zhu, J.,

Yuan, W., Qi, L., & Yu, S. (2007). Carbon storage by ecological

service forests in Zhejiang Province, subtropical China. Forest

Ecology and Management, 245(1–3), 64–75.

https://doi.org/10.1016/j.foreco.2007.03.042

Zuur, A. F., Smith, E. N. M., & Springer, J. (2007). Analysing

ecological data. In Springer Science and Business Media.

Downloads

Published

2022-11-24

How to Cite

Kabore, G. E., Bayen, P., Dayamba, S. D., & Thiombiano, A. (2022). Distribution and Carbon Sequestration Potential of Cola Laurifolia Mast.: A Dominant Native Riparian Species Along Permanent Rivers in Sub-Saharan Africa. ESI Preprints, 11, 586. Retrieved from https://esipreprints.org/index.php/esipreprints/article/view/208

Issue

Section

Preprints